
Neuronale Netze mit fischertechnik

Seit kurzem gibt es einen neuen ft-Baukasten, mit dem Namen STEM Coding

Ultimate AI. Dazu gehört als Software die STEM-Suite, die kostenlos

heruntergeladen werden kann. In dieser Software sind die Bauanleitungen, die

entsprechenden Anleitungen und eine Version vom ROBO Pro Coding enthalten.

Als wichtigste Neuerung von RPC ist wohl, das nun auch mit Neuronalen Netzen

experimentiert werden kann.

Zur besseren Einordnung erst einmal einige Begriffsbestimmungen.

Künstliche Intelligenz (KI)

Das breite Feld, das sich mit der Entwicklung von Maschinen beschäftigt, die Aufgaben ausführen können, die

normalerweise menschliche Intelligenz erfordern, wie z.B. das Erkennen, Lernen und Problemlösen.

Maschinelles Lernen

Ein Teilbereich der KI, der sich auf die Entwicklung von Algorithmen konzentriert, die es Computern ermöglichen, aus

Daten zu lernen und Vorhersagen zu treffen.

Deep Learning

Ein Teilbereich des maschinellen Lernens, der neuronale Netzwerke mit vielen Schichten (daher „tief“) verwendet,

um komplexe Muster in großen Datensätzen zu modellieren.

Neuronale Netze

Sie sind das grundlegende Konzept und können auch "flache" Strukturen mit wenigen Schichten haben.

Alle Deep-Learning-Modelle sind neuronale Netze, aber nicht alle neuronale Netze sind Deep-Learning-Modelle.

Grundlagen Künstliches Neuronales Netzwerk

Künstliche neuronale Netze sind Algorithmen, die dem menschlichen Gehirn nachempfunden sind. Dieses

abstrahierte Modell miteinander verbundener künstlicher Neuronen ermöglicht es, komplexe Aufgaben aus den

Bereichen Statistik, Informatik und Wirtschaft durch Computer zu lösen.

Neuronale Netze ermöglichen es, unterschiedliche Datenquellen wie Bilder, Töne, Texte, Tabellen oder Zeitreihen zu

interpretieren und Informationen oder Muster zu extrahieren, um diese auf unbekannte Daten anzuwenden. Auf

diese Weise können datenbasierte Vorhersagen für die Zukunft getroffen werden.

Das Modell des Neuronalen Netzes besteht aus Knoten,

auch Neuronen genannt, die Informationen von anderen

Neuronen oder von außen aufnehmen, modifizieren und

als Ergebnis wieder ausgeben. Dies geschieht über drei

verschiedene Schichten, denen jeweils ein Typ von

Neuronen zugeordnet werden kann: solche für den Input

(Eingabeschicht), solche für den Output (Ausgabeschicht)

und so genannte Hidden Neuronen (verborgene Schichten).

Die Information wird durch die Input-Neuronen

aufgenommen und durch die Output-Neuronen

ausgegeben. Die Hidden-Neuronen liegen dazwischen und

bilden innere Informationsmuster ab. Die Neuronen sind

miteinander über sogenannte Kanten verbunden. Je stärker

die Verbindung ist, desto größer die Einflussnahme auf das

andere Neuron.

Eingabeschicht: Die Eingangsschicht versorgt das neuronale Netz mit den notwendigen Informationen. Die Input-

Neuronen (Wert zwischen 0 und 1) verarbeiten die eingegebenen Daten und führen diese gewichtet an die nächste

Schicht weiter.

Verborgene Schicht: Die verborgene Schicht befindet sich zwischen der Eingabeschicht und der Ausgabeschicht.

Während die Ein- und Ausgabeschicht lediglich aus einer Ebene bestehen, können beliebig viele Ebenen an Neuronen

in der verborgenen Schicht vorhanden sein. Hier werden die empfangenen Informationen erneut gewichtet und von

Neuron zu Neuron bis zur Ausgabeschicht weitergereicht.

Ausgabeschicht: Die Ausgabeschicht ist die letzte Schicht und schließt unmittelbar an die letzte Ebene der

verborgenen Schicht an. Die Output-Neuronen (Wert zwischen 0 und 1) beinhalten die resultierende Entscheidung,

die als Informationsfluss hervorgeht.

Welche Anwendungen gibt es?

Typischerweise sind sie prädestiniert für solche Bereiche, bei denen wenig systematisches Wissen vorliegt, aber eine

große Menge unpräziser Eingabeinformationen (unstrukturierte Daten) verarbeitet werden müssen, um ein

konkretes Ergebnis zu erhalten. Das kann zum Beispiel in der Spracherkennung, Mustererkennung,

Gesichtserkennung oder Bilderkennung der Fall sein.

Ein gutes Beispiel wird unter: https://www.youtube.com/watch?v=aircAruvnKk erklärt.

Im Folgenden habe ich das Beispiel Fahrerlose Transport Fahrzeuge aus dem STEM zusammengetragen. Der

Zusammenbau des Fahrzeuges erfolgt über die Bauanleitung im STEM.

Dieses Projekt hilft dir, die Funktionsweise künstlicher neuronaler Netze (KNN) zu verstehen.

Während du Grundbegriffe eines neuronalen Netzes wiederholst, lernst du:

• wie ein neuronales Netz aufgebaut ist,

• was eine Klassifikation ist,

• und wie sich das von einer Mehrfach-Klassifikation (Multi-Label) unterscheidet.

Ob in der Automobilindustrie, in Lagerhallen oder in der

Lebensmittelproduktion – die FTF (Fahrerlose

Transport Fahrzeuge) helfen dabei, Arbeitsabläufe zu

verbessern, Transportzeiten zu verkürzen und die Arbeit

für Menschen sicherer und einfacher zu machen. Die

Fahrzeuge fahren Wege automatisch ab, weichen

Hindernissen aus und können rund um die Uhr eingesetzt

werden.

Inhalt:

Steuerung eines FTF – Steuerung mit einem neuronalen Netz 2

Konfiguration des neuronalen Netzwerkes für das FTF 5

Abstandssensor dem neuronalen Netz hinzufügen 8

https://www.youtube.com/watch?v=aircAruvnKk

Steuerung eines FTF – Steuerung mit einem neuronalen Netz

Mit den beiden IR-Sensoren (IR Track Sensor) des Spursensors

erkennst du, ob das Fahrzeug sich auf der schwarzen Linie (dem

gewünschten Fahrweg) befindet. Mit dem Abstandssensor

(Ultrasonic Distance Sensor) erkennst du Hindernisse und den

jeweiligen Abstand zum Hindernis.

Bisher hast du den Linienfolger mit ausführlicher

Programmierung realisiert.

Mit künstlicher Intelligenz in einem neuronalen

Netzwerk verringert sich der Programmieraufwand

und die Präzision kann gesteigert werden!

Neuronale Netze ahmen das Gehirn nach, indem sie wie Nervenzellen (Neuronen) Sinnesdaten empfangen, diese

über viele Verbindungen weiterleiten und verarbeiten und daraus passende Reaktionen erzeugen – so wie unser

Gehirn z. B. Muskelbewegungen oder Sprache steuert.

Überlege, wie du mit einer Fernbedienung das Fahrzeug steuern würdest!

Stelle vor der Einrichtung des neuronalen Netzes sicher,

dass „Learning Level 3“ ausgewählt ist. Neuronale

Netze erzeugst du im Funktionsbereich „Neural

Network (NN)“.

Klicke auf „Add neural network configuration“. Danach erscheint die Konfigurationsoberfläche für das neuronale

Netz.

Hier wird ein neuronales Netz (NN) angezeigt,

das nur aus einem Eingabeneuron und einem

Ausgabeneuron besteht. Mithilfe der

Werkzeuge auf der rechten Seite kannst du nun

selbst Einstellungen vornehmen und das

neuronale Netz entsprechend deiner

Aufgabenstellung aufbauen.

Im rot markierten Bereich findest Du die

Einstellungen für das gewünschte neuronale

Netz.

Training Controls

Epochs: Gibt an, wie oft das gesamte Trainingsdatenset vom neuronalen Netz

durchlaufen und gelernt wird. Mehr Epochen bedeuten oft bessere Anpassung,

aber auch längere Trainingszeit – und zu viele können zu Überanpassung

(Overfitting) führen.

Learning Rate: Bestimmt, wie stark die Gewichte des Netzes bei jedem

Lernschritt angepasst werden. Große Werte = schnelleres Lernen, aber Gefahr

des „Überschießens“ (man verpasst den optimalen Wert). Kleine Werte =

langsamer, aber stabiler.

Inputs: Anzahl der Eingabeneuronen. Jedes Neuron in dieser Schicht steht für

eine Eingabevariable (z. B. Temperatur, Luftfeuchtigkeit, Messwert). Die Anzahl

muss zur Struktur der Eingangsdaten passen.

Hidden Layers: Hier können verborgene Schichten hinzugefügt werden, also die

Verarbeitungsebenen zwischen Eingabe- und Ausgabeschicht. Jede Schicht

kann eine beliebige Anzahl an Neuronen haben, um komplexere Muster zu

erkennen. Mehr Schichten und Neuronen = höhere Modellkapazität, aber auch

mehr Rechenaufwand und Risiko von Überanpassung.

Outputs: Anzahl der Ausgabeneuronen. Bei einer Regression meist 1 Neuron je

Aktor (gibt eine Zahl zurück). Bei Klassifikation = Anzahl der möglichen Klassen

(z. B. 3 Neuronen für „rot“, „gelb“, „grün“).

Problem Type

Regression: Vorhersage von kontinuierlichen Werten (z. B. Temperatur,

Geschwindigkeit, Entfernung).

Classification: Vorhersage von Klassen, bei denen jedes Beispiel genau einer Klasse zugordnet wird (z. B. Fußgänger

oder Rollstuhlfahrer).

Multi-label Classification: Einem Beispiel können mehrere Klassen gleichzeitig zugeordnet werden (z. B. ein Bild kann

„Ball“ und „rot“ sein).

Extras

Use Weighted Loss aktiviert gewichtete Fehlerbewertung. Das ist nützlich, wenn manche Klassen oder Werte im

Trainingsdatensatz seltener vorkommen und man verhindern will, dass das Netz diese vernachlässigt. Beispiel: Bei

einer Klassifikation mit 90 % Klasse A und 10 % Klasse B würde ein Standardnetz Klasse A bevorzugen – durch

Gewichtung kann man beide Klassen gleich wichtig machen.

Konfiguration des neuronalen Netzwerkes für das FTF

Was soll bei verschiedenen Sensorzuständen an den Ausgängen passieren?

Für das Programm für die Linienfolge musst du zunächst zwei Variablen definieren:

Die 2 Input-Werte werden nun in in der Reihenfolge des angelegten neuronalen Netzes in eine Liste geschrieben.

Der Block „execute NN with inputs“ erzeugt ebenfalls eine Liste mit Output 1 an erster Stelle und Output 2 an

zweiter Stelle. Hier werden dann die vom neuronalen Netz ermittelten Zahlenwerte zwischen 0 und 1 ausgegeben.

Mit diesen beiden Listenwerten werden die aktuell notwendigen Geschwindigkeiten eingestellt, indem sie mit der

Maximalgeschwindigkeit (hier 450) multipliziert werden.

Geduld: das Programm braucht ca. 10s nach dem Hochladen bis zum Start.

Stelle die richtigen Parameter

des NN für das FTF ein.

Es kann durchaus sein, dass das Programm schon richtig funktioniert hat.

In der Regel klappt das aber nicht.

Das neuronale Netz versucht, die vorgegebenen Zeilen der Trainingsdaten exakt zu

erfüllen. Dabei kann es z. B. „übers Ziel hinausschießen“! Wir müssen es auf jeden Fall

richtig trainieren – aber wie? Die Sensoren schicken Rohwerte ins Gehirn des Roboters.

Jede Verbindung hat im Programm eine „Stellschraube“, die bestimmt, wie stark das

ursprüngliche Signal bei einem bestimmten „Denkneuron“ ankommt. Beim Training dreht

man in jeder Runde (Epoche) an diesen Stellschrauben, bis die Motoren im richtigen

Moment genau das tun, was sie sollen. Das neuronale Netz schaut also, wie groß sein

Fehler war, geht rückwärts durch alle Verbindungen und dreht an den Stellschrauben der

Gewichte, damit es beim nächsten Mal besser liegt. Um das komplexe biologische

neuronale Netz im Programm zu simulieren, hilft uns die Mathematik.

Jedes Eingangsneuron schickt nach dem Training also seinen eigenen gewichteten Wert an die Neuronen der

verborgenen Schicht. Hier werden die Eingangssignale addiert und wiederum gewichtet. Diese „Denkneuronen“

senden Signale an die Ausgangsneuronen, die diese Signale ebenfalls addieren und gewichten.

Summe = (Eingabe_1• Gewicht_1) + (Eingabe_2 • Gewicht_2) + Bias

Der Bias ist im Prinzip ein kleiner Trick, damit ein Neuron flexibler reagieren kann. Bias verschiebt den Startpunkt, ab

wann ein Neuron aktiv wird, er stellt quasi die Grundaktivität eines Neurons ein, auch wenn kein Sensorwert anliegt.

Mit einer speziellen mathematischen „Aktivierungsfunktion“ werden die gewichteten Daten abschließend noch in

eine dynamische, nicht-lineare Funktion umgerechnet. Das kommt der Biologie sehr nahe!

So entsteht eine Tabelle, die im Programm abgelegt und bei „execute NN with inputs“ zur Vorhersage der benötigten

Motorwerte verwendet wird.

ACHTUNG Fehlerquellen:

Die Genauigkeit des Trainings hängt von mehreren Faktoren ab:

1. Anzahl der Trainingsdurchläufe (Epochen): je mehr, umso genauer, aber zeitintensiv

2. Einstellung der Lernrate (learning rate)

3. Anzahl der vorgegebenen Situationen in der Trainingstabelle

Warum sollen die Eingaben für das neuronale Netz zwischen 0 und 1 liegen?

Neuronale Netze lernen besser, wenn die Eingaben (z. B.

Abstandswerte-Werte) zwischen 0 und 1 liegen:

Große Zahlen (z.B. 100) führen dazu, dass Aktivierungsfunktionen

wie die Sigmoid-Funktion in Sättigungsbereiche geraten - dort

reagiert das Netz kaum noch.

Kleine, normierte Werte (0–1) liegen im empfindlichen Bereich der

Funktion. → Das Netz reagiert stärker und passt seine Gewichte

besser an.

Lösungsmöglichkeit

Von der Biologie lernen!

Im menschlichen Nervensystem ist die Lage ähnlich, nur eben in der „Bio-Version“, mit Nervenzellen und chemischen

Reaktionen, statt Silizium und Software.

• Sinneszellen (Sensoren): z. B. Fotorezeptoren in der Netzhaut, Haarzellen im Ohr, Tastzellen in der Haut. Sie

nehmen physikalische Reize auf (Licht, Schall, Druck) und wandeln sie in elektrische Signale um.

• Eingangsebene (vergleichbar mit Eingangsneuronen): Die Sinneszellen sind über Nervenbahnen mit anderen

Nervenzellen verbunden, die diese Signale an die nächsten Schaltstellen weiterleiten. Dabei kann schon eine

erste „Vorverarbeitung“ stattfinden (z. B. Kontrastverstärkung im Auge).

• „Verborgene Schichten“ im Gehirn (Hidden Layer): Mehrere Schichten von Neuronen verarbeiten, gewichten

und kombinieren die Signale, bevor eine Entscheidung oder Reaktion ausgelöst wird.

• Ausgangsebene (Motorneuronen): Lösen dann Muskelbewegungen oder andere Reaktionen aus.

Der große Unterschied:

Im Gehirn wird das „Training“ nicht durch Rechenoperationen gesteuert, sondern durch komplexe biochemische

Prozesse — z. B. Synapsenverstärkung oder -abschwächung (Hebb’sches Lernen) basierend auf Erfahrung.

Jetzt wird gelernt

Probiere zunächst die vorgegebenen

Grundeinstellungen aus:

Epochsen: 100

Learning Rate: 0.5

Klicke auf Start.

Funktioniert das Programm nun besser? Bei jedem Trainingsdurchlauf werden andere Gewichte und Bias berechnet.

Klick auf Reset und erneut auf Start. Teste das Programm und beobachte, ob es im Ablauf Unterschiede gibt.

Mögliche Ergebnisse:

Wird es noch besser? Zahl der Trainingsepochen vergrößern

Führe nun weitere Versuche mit geänderten Einstellungen (Epochen, Lernrate) durch.

Denke vor dem Start des Trainings daran, den Reset-Button zu betätigen.

Nach jedem Training überträgst du das Programm in den TXT 4.0 Controller und machst eine Testfahrt mit dem FTF.

Welche Unterschiede bemerkst du?

Ist evtl. eine Version „übertrainiert“?

Abstandssensor dem neuronalen Netz hinzufügen
Beim Einsatz eines FTFs kann es vorkommen, dass sich Gegenstände oder langsamere FTFs im jeweiligen Block vor

dem schnelleren FTF befinden. Damit es in diesem Fall zu keiner Kollision kommt, soll das FTF nun mit einer

Bremsfunktion ausgestattet werden. Zur Simulation wird das FTF und ein Gegenstand (etwa in der Höhe des FTF) auf

den Plan gesetzt. Ziel ist es, das Fahrzeug so zu programmieren, dass es das Hindernis erkennt und stoppt. Zur

Simulation eines langsameren Fahrzeugs kannst du das Hindernis vor dem FTF bewegen. Das FTF soll abbremsen, bis

es die gleiche Geschwindigkeit wie dein bewegtes Hindernis hat.

Der Abstandssensor ist bereits an den Eingang I3 angeschlossen.

Zunächst muss du in deinem bisherigen Programm die Variable „us_sensor“ erstellen.

Zu Beginn der „repeat forever“-Schleife soll der Messwert des Abstandssensors in die Variable „us_sensor“

geschrieben werden. Die Messwerte des Abstandssensors sind cm-Angaben. Wir wollen nur den Wertebereich

zwischen 0 und 100 cm betrachten. Jeder größere Wert wird grundsätzlich auf 100 cm gesetzt. Das Lernen des

neuronalen Netzes funktioniert aber mit Werten zwischen 0 und 1 besser. Deshalb müssen die Werte in der Variablen

„us_sensor“ durch 100 geteilt werden, sodass sie nun alle zwischen 0 und 1 liegen.

Nun musst du die Listenvariable „inputs“ noch um den Eintrag des „us_sensor“-Wertes erweitern.

Schon ist das erweiterte Programm fertig. Nun musst du nur noch das neuronale Netz entsprechend erweitern und

dann erneut trainieren.

Zunächst musst du ein drittes Eingangsneuron hinzufügen.

Dadurch wir auch die Tabelle „Training Data“ um eine

Spalte erweitert.

Beachte, dass die hohe Motorgeschwindigkeit hier auf 0.7 (statt wie bisher 0.9) gesetzt werden muss.

Nun musst du das neuronale Netz trainieren. Für dieses

etwas komplexere Problem sind für die Training Controls die

folgenden Einstellungen sinnvoll: 1000 Epochen und Learning

Rate 0.1.

Führe mehrere Trainings mit den gleichen Parametern durch. Teste nach jedem Training das Programm und

beobachte die Reaktionen des FTFs.

War das Testen der Programme erfolgreich?

Folgende Punkte helfen dir bei der Fehlersuche. Überprüfe die Vorschläge ggf. mit deiner Anlage.

• Stimmt der Programmablauf?

• Stimmen die die Variablennamen?

• Sind alle Funktionen und Variablen korrekt definiert?

• Ist die Tabelle „Training Data“ korrekt?

• Hast du mehrere Trainingsdurchläufe durchgeführt und getestet?

Wenn das FTF wie gewünscht fährt, klicke auf weiter.

